SHOGUN  v3.2.0
SVMOcas.h
浏览该文件的文档.
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License as published by
4  * the Free Software Foundation; either version 3 of the License, or
5  * (at your option) any later version.
6  *
7  * Written (W) 2007-2009 Vojtech Franc
8  * Written (W) 2007-2009 Soeren Sonnenburg
9  * Copyright (C) 2007-2009 Fraunhofer Institute FIRST and Max-Planck-Society
10  */
11 
12 #ifndef _SVMOCAS_H___
13 #define _SVMOCAS_H___
14 
15 #include <shogun/lib/common.h>
17 #include <shogun/lib/external/libocas.h>
19 #include <shogun/labels/Labels.h>
20 
21 namespace shogun
22 {
23 #ifndef DOXYGEN_SHOULD_SKIP_THIS
24 enum E_SVM_TYPE
25 {
26  SVM_OCAS = 0,
27  SVM_BMRM = 1
28 };
29 #endif
30 
32 class CSVMOcas : public CLinearMachine
33 {
34  public:
35 
38 
40  CSVMOcas();
41 
46  CSVMOcas(E_SVM_TYPE type);
47 
54  CSVMOcas(
55  float64_t C, CDotFeatures* traindat,
56  CLabels* trainlab);
57  virtual ~CSVMOcas();
58 
64 
71  inline void set_C(float64_t c_neg, float64_t c_pos) { C1=c_neg; C2=c_pos; }
72 
77  inline float64_t get_C1() { return C1; }
78 
83  inline float64_t get_C2() { return C2; }
84 
89  inline void set_epsilon(float64_t eps) { epsilon=eps; }
90 
95  inline float64_t get_epsilon() { return epsilon; }
96 
101  inline void set_bias_enabled(bool enable_bias) { use_bias=enable_bias; }
102 
107  inline bool get_bias_enabled() { return use_bias; }
108 
113  inline void set_bufsize(int32_t sz) { bufsize=sz; }
114 
119  inline int32_t get_bufsize() { return bufsize; }
120 
125  virtual float64_t compute_primal_objective() const;
126 
127  protected:
136  static void compute_W(
137  float64_t *sq_norm_W, float64_t *dp_WoldW, float64_t *alpha,
138  uint32_t nSel, void* ptr);
139 
146  static float64_t update_W(float64_t t, void* ptr );
147 
156  static int add_new_cut(
157  float64_t *new_col_H, uint32_t *new_cut, uint32_t cut_length,
158  uint32_t nSel, void* ptr );
159 
165  static int compute_output( float64_t *output, void* ptr );
166 
173  static int sort( float64_t* vals, float64_t* data, uint32_t size);
174 
176  static inline void print(ocas_return_value_T value)
177  {
178  return;
179  }
180 
181  protected:
190  virtual bool train_machine(CFeatures* data=NULL);
191 
193  inline const char* get_name() const { return "SVMOcas"; }
194  private:
195  void init();
196 
197  protected:
199  bool use_bias;
201  int32_t bufsize;
209  E_SVM_TYPE method;
210 
219 
224  uint32_t** cp_index;
226  uint32_t* cp_nz_dims;
229 
232 };
233 }
234 #endif
float64_t * tmp_a_buf
Definition: SVMOcas.h:216
EMachineType
Definition: Machine.h:33
MACHINE_PROBLEM_TYPE(PT_BINARY)
static void print(ocas_return_value_T value)
Definition: SVMOcas.h:176
uint32_t * cp_nz_dims
Definition: SVMOcas.h:226
int32_t bufsize
Definition: SVMOcas.h:201
The class Labels models labels, i.e. class assignments of objects.
Definition: Labels.h:35
E_SVM_TYPE method
Definition: SVMOcas.h:209
void set_epsilon(float64_t eps)
Definition: SVMOcas.h:89
int32_t get_bufsize()
Definition: SVMOcas.h:119
float64_t get_C2()
Definition: SVMOcas.h:83
virtual bool train_machine(CFeatures *data=NULL)
Definition: SVMOcas.cpp:55
Features that support dot products among other operations.
Definition: DotFeatures.h:41
virtual float64_t compute_primal_objective() const
Definition: SVMOcas.cpp:361
float64_t epsilon
Definition: SVMOcas.h:207
float64_t old_bias
Definition: SVMOcas.h:214
SGVector< float64_t > lab
Definition: SVMOcas.h:218
float64_t * cp_bias
Definition: SVMOcas.h:228
double float64_t
Definition: common.h:48
float64_t get_C1()
Definition: SVMOcas.h:77
void set_C(float64_t c_neg, float64_t c_pos)
Definition: SVMOcas.h:71
static int compute_output(float64_t *output, void *ptr)
Definition: SVMOcas.cpp:269
float64_t * old_w
Definition: SVMOcas.h:212
virtual ~CSVMOcas()
Definition: SVMOcas.cpp:51
Class LinearMachine is a generic interface for all kinds of linear machines like classifiers.
Definition: LinearMachine.h:61
void set_bufsize(int32_t sz)
Definition: SVMOcas.h:113
float64_t get_epsilon()
Definition: SVMOcas.h:95
void set_bias_enabled(bool enable_bias)
Definition: SVMOcas.h:101
uint32_t ** cp_index
Definition: SVMOcas.h:224
all of classes and functions are contained in the shogun namespace
Definition: class_list.h:16
static int sort(float64_t *vals, float64_t *data, uint32_t size)
Definition: SVMOcas.cpp:258
static float64_t update_W(float64_t t, void *ptr)
Definition: SVMOcas.cpp:155
The class Features is the base class of all feature objects.
Definition: Features.h:62
virtual EMachineType get_classifier_type()
Definition: SVMOcas.h:63
float64_t C1
Definition: SVMOcas.h:203
class SVMOcas
Definition: SVMOcas.h:32
bool get_bias_enabled()
Definition: SVMOcas.h:107
float64_t ** cp_value
Definition: SVMOcas.h:222
static int add_new_cut(float64_t *new_col_H, uint32_t *new_cut, uint32_t cut_length, uint32_t nSel, void *ptr)
Definition: SVMOcas.cpp:182
float64_t primal_objective
Definition: SVMOcas.h:231
static void compute_W(float64_t *sq_norm_W, float64_t *dp_WoldW, float64_t *alpha, uint32_t nSel, void *ptr)
Definition: SVMOcas.cpp:295
float64_t C2
Definition: SVMOcas.h:205
const char * get_name() const
Definition: SVMOcas.h:193

SHOGUN Machine Learning Toolbox - Documentation